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Abstract. The charged kaon decay channel K+�3γ allows for studies of direct CP violation, possibly due

to non-standard mechanisms, with the help of T -odd correlation variables. In order to be able to extract
aCP -violating signal from experiment, it is necessary to understand all possible standard model phases that
also produce T -odd asymmetries. We complement earlier studies by considering strong interaction phases in
hadronic structure functions that appear at higher orders in chiral perturbation theory, and we compare our
findings to other potential sources of asymmetries.

PACS. 13.20.Eb; 11.30.Er; 12.39.Fe

1 Introduction

The decays of charged kaons may serve as an excellent
system to study direct CP violation in particle physics.
As this is expected to be totally negligible in particular
for semileptonic kaon decays within the standard model,
the investigation of such channels may even give ac-
cess to non-standard CP -violating mechanisms, or limits
thereon.
As the simplest CP -violating observable, namely the

charge asymmetry of the decay widths Γ (K+ → f)−
Γ (K−→ f̄), can only be non-vanishing in the presence of
at least two weak amplitudes with different re-scattering
phases [1], it has been suggested to resort to T -odd corre-
lations in order to test CP in the context of semileptonic
charged kaon decays. In the decays K+→ π0µ+νµ (Kµ3)
or K+→ µ+νµγ (Kµ2γ) (see e.g. [2–10] and references
therein) the transverse muon polarization is a suitable ob-
servable that is odd under time reversal.
In experiments that do not have access to the lepton

polarization, however, a T -odd correlation can still be con-
structed as a triple scalar product ξ of three independent
momenta in decay channels with at least four particles
in the final state, such as K+→ π+π−�+ν� (K�4) [11] or
K+→ π0�+ν�γ (K�3γ), which we (re-)investigate in this
article. Violation of T -invariance in such channels will
manifest itself in ξ-odd contributions to the differential
width dΓ/dξ, or in the asymmetry N(ξ > 0)−N(ξ < 0).
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Experiments studying this effect in K�3γ have started pro-
ducing results recently [12–14] but still lack the necessary
precision to test theoretical predictions.
An investigation of the T -odd asymmetries in K�3γ

that arise in extensions of the standard model has first
been performed in [15]. In principle, if both the decay of
the K+ and its charge conjugate mode for the K− are
measured and their asymmetries appropriately combined,
these effects due to complex non-standard couplings can
be unambiguously extracted. However, if only the K+ or
the K− channel are considered, there are also contribu-
tions to the asymmetry from within the standard model
due to final-state interaction phases, which have to be
accounted for when determining the part attributed to
new physics. The effects of photon loops that emerge as
rescattering effects of the photon and the charged lepton
have been investigated in [16]. Another source, however,
which so far seems to have been completely ignored, are
phases due to imaginary parts in the (hadronic) struc-
ture functions in K�3γ . These structure functions can be
calculated systematically in the framework of chiral per-
turbation theory (ChPT), and they were shown to be
purely real at leading (non-trivial) order (O(p4)) [17],
but as it was pointed out in [18] (for the correspond-
ing neutral kaon decay mode), imaginary parts arise be-
yond leading order, starting at O(p6). There is no a priori
reason why these should be neglected compared to elec-
tromagnetic phases; in fact, although of relatively high
order in the chiral expansion, they lack the suppression by
α∼ 1/137.
In this article, we will clarify the situation by a thor-

ough investigation of the imaginary parts of the structure
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functions in ChPT. We lay out some necessary formalism
in Sect. 2. We present our main results, the analytic forms
of the leading cut contributions as well as numerical results
for the T -odd asymmetries, in Sect. 3. In Sect. 4 we com-
pare our findings to the asymmetries due to photon loops
and make some comments on the size and structure of
beyond-the-standard-model contributions. Section 5 con-
tains our conclusions. Some more technical aspects are rel-
egated to the appendices.

2 Phenomenology of K+�3γ decays

We briefly review the phenomenology of the decay

K+(p)→ π0(p′)�+(p�)ν�(pν)γ(q)
[
K+�3γ

]
, �= e, µ ,

(1)

which has been done in more detail for the corresponding
decay of neutral kaons in [18].

2.1 Matrix element

TheK+�3γ matrix element can be written as

T (K+�3γ) =
GF√
2
eV ∗usε

µ(q)∗

×

[
(Vµν −Aµν)ν(pν)γ

ν(1−γ5)�(p�)

+
Fν

2p�q
ν(pν)γ

ν(1−γ5)(m�−p�/ − q/ )γµ�(p�)

]
,

(2)

where the hadronic tensors Vµν and Aµν are given by

Iµν = i

∫
d4xeiqx〈π0(p′)|T{V emµ (x)I

had
ν (0)}|K

+(p)〉 ,

I = V,A , (3)

with

V hadν = sγνu , A
had
ν = sγνγ5u ,

V emµ =
(
2uγµu−dγµd− sγµs

)
/3 , (4)

whereas Fν is theK
+
�3 vector correlator

Fν = 〈π
0(p′)|V hadν |K+(p)〉 . (5)

The tensors Vµν and Aµν satisfy the electromagnetic Ward
identities

qµVµν = Fν , q
µAµν = 0 , (6)

which guarantee gauge invariance of the amplitude (2).
The K+�3γ amplitude can be decomposed into (sep-

arately gauge invariant) inner bremsstrahlung (IB) and
structure dependent (SD) parts. According to Low’s theo-
rem [19], the IB terms, which comprise the part of the

amplitude non-vanishing for small photon momenta (and
in particular the infrared divergent pieces), are given en-
tirely in terms of theK+�3 form factors f+, f1 defined by

Fν(t) =
1
√
2
(2p′νf+(t)+ (p−p

′)νf1(t)) , (7)

with t= (p−p′)2. This splitting of the matrix element im-
plies a corresponding splitting of the hadronic tensors Vµν
and Aµν . The decomposition of the vector correlator reads

Vµν = V
IB
µν +V

SD
µν , (8)

where the IB piece is chosen such that

qµV IBµν = Fν(t) , q
µV SDµν = 0 . (9)

V IBµν can be shown [20] (see also [18] for a corresponding
derivation forK0�3γ , and [21, 22] for slightly different repre-
sentations) to be given in terms of f+ and f1 as follows:

V IBµν =
1
√
2

[
pµ

pq

(
2p′νf+(W

2)+Wνf1(W
2)
)

+
Wµ

qW
(2p′ν∆f++Wν∆f1)+ gµνf1(t)

]
,

∆fi = fi(t)−fi(W
2) , i=+, 1 , (10)

whereW = p−p′− q. The structure dependent part can be
expressed in terms of four scalar functions Vi, i= 1, ..., 4, in
a basis of gauge invariant tensors according to

V SDµν =
1
√
2

[
V1
(
p′µqν −p

′qgµν
)
+V2(Wµqν − qWgµν)

+V3
(
qWp′µWν −p

′qWµWν
)

+V4
(
qWp′µp

′
ν −p

′qWµp
′
ν

)]
. (11)

The axial correlator Aµν consists of structure dependent
parts only, and it can also be expressed in terms of four
scalar functions Ai, i= 1...4,

Aµν =
i
√
2

[
εµν�σ

(
A1p

′�qσ+A2q
�Wσ

)

+εµλ�σp
′λq�Wσ

(
A3

M2K−W
2
Wν +A4p

′
ν

)]
.

(12)

(We use the convention ε0123 =+1.) Note that in compar-
ison to [17, 18], we have, for convenience, factored out the
kaon pole explicitly in the definition of the structure func-
tion A3.

2.2 Kinematics

The functions Vi and Ai depend on the three independent
Mandelstam variables s, t, and u defined by

s= (p′+ q)2 , t= (p−p′)2 , u= (p− q)2 , (13)
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where s+ t+u =M2K +M
2
π+W

2. The precise kinematic
limits for these are given in [18]. In order to describe the
full kinematics of the K+�3γ decay, two more variables are
needed, e.g.

ppe/MK =E
∗
e , x= peq/M

2
K . (14)

One often works in the rest frame of the decaying kaon.1

In order to tame the infrared singularity for small photon
energies E∗γ , it is necessary to cut on this variable when
calculating observables,

E∗γ ≥E
cut
γ . (15)

In addition, there is a near-singularity in the electron chan-
nel when x becomes small for collinear photon and positron
momenta,

peq = xM
2
K =E

∗
γ

(
E∗e −

√
E∗2e −m

2
e cos θ

∗
eγ

)
, (16)

therefore in this channel one also cuts on the angle

θ∗eγ ≥ θ
cut
eγ . (17)

We use the “standard cuts” Ecutγ = 30MeV, θcuteγ = 20
◦

most of the time in this work, except for Sect. 4.3 where we
explicitly study the dependence of the T -odd asymmetry
on these cuts.

2.3 The asymmetry Aξ

The spin summed squared matrix element can be ex-
pressed in terms of the functions Vi, Ai, and the K�3 form
factors f+, f1:

N−1
∑
spins

|T |2 =
∑
f,f ′

aff ′ff
′+
∑
f,I

bfIf Re{I}

+ ξ
∑
f,I

cfIf Im{I}+O
(
V 2i , A

2
i , AiVj

)
,

(18)

where

f, f ′ ∈ {f+, δf+, f1, δf1} , δf+,1 ≡
M2K
qW
∆f+,1 ,

I ∈ {Vi, Ai} , i= 1, ..., 4 , (19)

and the T -odd variable ξ is given by2

ξ = εµναβp
µqνpα� p

′β/M4K
CMS
= q · (p�×p

′) /M3K , (20)

where the last form refers to the center-of-mass (CMS) sys-
tem for the decay, the kaon rest frame. The functions aff ′ ,

1 We label quantities in this frame by an upper index ‘∗’.
2 The sign of the definition (20) is opposite to Appendix B
in [18], but agrees with the convention used in [15, 16]. We are
grateful to V.V. Braguta for confirming this point.

bfI , cfI are kinematical factors that depend on scalar prod-
ucts of the final particle momenta. We spell out the factors
relevant for the ξ-odd part of the squaredmatrix element in
Appendix C.1. Finally the normalization factor in (18) is

N = 8παG2F|Vus|
2M2K . (21)

The first part of the squared matrix element (18),
which contains neither Vi nor Ai, only consists of inner
bremsstrahlung and is the dominant part e.g. for the par-
tial decay width. The other terms arise because of inter-
ference of the IB and SD pieces. It was found in [18] that
these contributions are suppressed by two orders of mag-
nitude compared to the IB2 part in K0e3γ , and we find
the same suppression in the decay described in this pa-
per. Contributions of O(V 2i , A

2
i , ViAj) are suppressed even

further, which is why we neglect them. We remark that
the kinematical factors that multiply f1, δf1, V3, and A3
are suppressed by (m�/MK)

2; hence these terms can be
dropped in the electron channel.
It is crucial to note that the imaginary parts of the func-

tions Vi, Ai are always multiplied by ξ in (18).
We can compute the differential width dΓ/dξ with

respect to ξ. As ξ2 can be expressed in terms of scalar
products of the final particle momenta, we can split the dif-
ferential width into a T -even and a T -odd part,

dΓ

dξ
= �even+ ξ�odd , (22)

where �even and �odd only depend on scalar products of fi-
nal particle momenta. To compare the relative size of both
contributions it is convenient to define the asymmetry

Aξ =
N+−N−
N++N−

with N± =

∫

ξ≷0
dΓ . (23)

3 Imaginary parts and asymmetry in ChPT

3.1 ChPT up to O(p4)

The structure functions Vi and Ai have been evaluated
in the framework of chiral perturbation theory in [17] up
to O(p4). For the axial amplitude the only contributions
come from tree level diagrams with vertices from theWess–
Zumino–Witten anomalous Lagrangian [23, 24]

A1 =−4A2 =A3 =−
1

2π2F 2
, A4 = 0 (24)

(where F is the [pseudoscalar] meson decay constant),
whereas the Vi are obtained by evaluating L(4) counter-
terms and loops with L(2) vertices. However, all cuts in the
loop diagrams lie well outside the physical region. To see
this consider, for example, the t-channel diagram in Fig. 1,
which will develop imaginary parts for t ≥ (MK +Mπ)2

or W 2 ≥ (MK +Mπ)2. The same is true for all O(p4) di-
agrams, which only have cuts in the variables t and W 2,
as, because of strangeness conservation, one always has to
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Fig. 1. Example of a O(p4) loop diagram with cuts for t ≥
(MK +Mπ)

2 andW 2 ≥ (MK +Mπ)
2

Table 1. Average values of Vi, Ai
at O(p4) (in units ofMK)

〈V1〉 −1.24 〈A1〉 −1.19
〈V2〉 −0.19 〈A2〉 0.30
〈V3〉 −0.02 〈A3〉 −1.19
〈V4〉 0 〈A4〉 0

cut (at least) one kaon line. This implies that the struc-
ture functions are real in the physical region. As shown
in [20] (and similarly for the neutral K�3γ decay in [18]),
the structure functions altogether vary only very little over
phase space atO(p4) and therefore, to a very good approx-
imation, can be replaced by their average values 〈Vi〉 as
given in Table 1. The reality of the structure functions im-
plies that the squaredmatrix element (18) does not contain
terms that are proportional to ξ, and hence the asymme-
try Aξ will be zero at this order of ChPT.
The lowest cut in the K�3 form factors f+(t), f1(t) also

occurs at t≥ (MK+Mπ)2, therefore the K�3 matrix elem-
ent is real throughout phase space. In this work, we use
a phenomenological parameterization of these form fac-
tors; see Appendix A.2.

3.2 Im{Vi}, Im{Ai} at O(p6)

The above argument holds in fact for all cuts in the vari-
ables t, u, and W 2, at arbitrary orders in the chiral ex-
pansion: because of strangeness conservation, all cuts in
these variables lie at t, u,W 2 ≥ (MK +Mπ)2 and there-
fore outside the physical region. Cuts within the physical
region can only be due to two- or three-pion intermedi-
ate states in the s-channel, which first arise at O(p6) in
ChPT. All lowest cuts in the variables s, t, and u and
their positions in the Mandelstam plane are depicted in
Fig. 2.
The Wess–Zumino–Witten Lagrangian contains πππγ

vertices, therefore it is possible to have s-channel cuts of
one-loop diagrams that will contribute to the axial tensor
Aµν . The two diagrams shown in Fig. 3 are the only ones
that have to be evaluated. We find

Fig. 2.Mandelstam plane with the lowest cuts in the variables
s, t, u, at fixedW 2 =m2e

Fig. 3. O(p6) diagrams with cuts in the s-channel that con-
tribute to Im{Ai}. The big filled dots denote vertices from the
Wess–Zumino–Witten Lagrangian. The second diagram with
the kaon pole contributes to A3 only

Im{A1}= Im{A3}=−
s

384π3F 4

(
1−
4M2π
s

)3/2
,

Im{A2}= Im{A4}= 0 . (25)

The threshold behavior in (25) is dictated by the fact
that the intermediate pions are required to be in a rela-
tive p-wave, which leads to a suppression by a factor of
(1−4M2π/s)∼ |prel|

2 (where prel is the relative three mo-
mentum of the pions in their center-of-mass system).
At O(p6), the vector correlator Vµν can only receive

three-pion-cut contributions in the physical region, i.e.,
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Fig. 4. Two-loop diagrams with three-pion cuts that con-
tribute to Im{Vi}

from two-loop diagrams. As the kinematical limit for s in
the physical region is s≤ (MK −m�)2, these will only con-
tribute in the electron channel.
The general form of these two-loop diagrams is shown

in Fig. 4a, where the blobs denote all possible combinations
of propagators and vertices from L(2). The right blob is the
sum of all possible ways of coupling the photon, which is
shown in Fig. 4c. One can show that, as the photon corre-
lator Γµ is antisymmetric in k1↔ k2,

Γµ = 〈π
0(p′)|V emµ |π

−(k1)π
+(k2)π

0(k3)〉

=
e

F 2
{
(k1+k2− q)

2−M2π
}(k1µ
k1q
−
k2µ
k2q

)
+O(p4) ,

(26)

it is sufficient to consider the sum of diagrams shown in
Fig. 4b for the weak vector current coupling, as the sum of
all other diagrams does not contribute. Isospin symmetry
conservation dictates that the correlator [25]

〈π−(k1)π
+(k2)π

0(k3)|V
had
ν |K+(p)〉

=Aν(2, 1, 3)+Bν(2, 1, 3) (27)

can be decomposed into an amplitude Aν(2, 1, 3) that is
symmetric in the charged pion momenta k1, k2, and an am-
plitude Bν(2, 1, 3) that is totally antisymmetric in k1, k2,
and k3. Thus only Bν(2, 1, 3) is projected out as the inte-
gration is symmetric in the intermediate pion momenta.
Reversing this argument it is also clear that only the to-
tally antisymmetric part of the photon correlator Γµ will
contribute. This leads to a further suppression of the imag-
inary parts by 1−9M2π/s near the cut threshold, as we will
discuss below.
In order to evaluate the imaginary part of these dia-

grams we use Cutkosky rules [26]. As the phase space is re-
stricted by s≤ (MK−me)2 and the cut starts at s≥ 9M2π
the intermediate pions are close to threshold. We thus ex-
pand the integral in the small quantity

ε=

√
s−3Mπ
Mπ

=
3

2

(
1−
9M2π
s

)
+O(ε2) , (28)

and content ourselves with calculating the imaginary parts
of the structure functions Vi to leading order in ε. In
this way we correctly reproduce the leading threshold
behavior.3

We first discuss how the threshold behavior of this
three-pion-cut contribution can be understood without ex-
plicit calculation, in terms of symmetry arguments. We
argued above that only the totally antisymmetric part of
the correlator in (27) will contribute. However, in our ex-
pansion Bν(2, 1, 3) is expandable as a polynomial in the
pion three momenta ki, and it is easy to see that each poly-
nomial that is totally antisymmetric in the ki is at least of
O(kikj) =O(ε). The same is true for the totally antisym-
metric part of the photon correlator. Note that both the
kaon and the pion propagators in the diagram Fig. 4 are
non-singular near threshold,

M2K− (ki+W )
2→
2

3

(
M2K +3M

2
π−W

2
)
+O(

√
ε) ,

kiq→
4

3
M2π+O(

√
ε) (29)

(in the center-of-mass system of the three pions), and can
therefore be safely expanded. We therefore obtain a fac-
tor of ε2 from the vertices alone. The three-particle phase
space by itself is of O(ε2), hence we expect that the lowest
power of ε in the expansion of the imaginary parts of the
structure functions Vi will be ε

4 ∼ (1−9M2π/s)
4. So while

angular momentum conservation leads to a suppression by
one additional power of ε like in the two-pion-cut diagrams
discussed above, another factor of ε is due to isospin sym-
metry arguments. If isospin-violating effects were allowed
for, an isospin-breaking threshold behavior ∼ ε3 would
occur.
Further technical details on the calculation of the three-

pion-cut contributions can be found in [28]. The explicit

3 Note that, despite the fact that ε can be as large as 0.5 at
the border of phase space, such an expansion in ε is seen to
converge rather rapidly for the imaginary part of the scalar sun-
set diagram S, Im{S}=M2πε

2/(384
√
3π2){1−ε/6+7ε2/144∓

...}; see e.g. [27].
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expressions we find are

Im{Vi}= Ci
1

32768π2
√
3F 4

s

M2K+3M
2
π−W

2

×

(
1−
9M2π
s

)4
+O
(
ε5
)
, (30)

with

C1 =
1

2

(
s+ t−M2K

)
, C2 =

1

2

(
s+M2π

)
,

C3 = 0 , C4 = 1 . (31)

We expect that the two types of contributions to the
T -odd asymmetry due to imaginary parts in the structure
functions Ai, Vi differ considerably in size for the following
reasons.

1. The three-pion-cut diagrams contribute only in a very
small region of phase space compared to the two-pion-
cut diagrams due to the higher threshold. Numerically,
this turns out to account for a relative suppression by
roughly three orders of magnitude.

2. The threshold behavior of the latter is only suppressed
as (1− 4M2π/s)

3/2 compared to (1− 9M2π/s)
4 for the

three-pion-cut diagrams. The higher exponent for the
three-pion cut leads to a further suppression by about
two orders of magnitude.

3. Finally, additional combinatorial prefactors of the
three-particle versus the two-particle phase space sup-
press the former by another two orders of magnitude.

Altogether we expect the three-pion-cut diagrams atO(p6)
to be suppressed by roughly seven orders of magnitude
compared to the two-pion-cut contributions at the same
chiral order. These expectations are born out in the precise
numerical evaluations below.

3.3 Beyond O(p6)

In the light of the strong kinematical suppression of
the three-pion-cut contributions in the vector structure
functions, we find better constraints on the asymmetries
due to hadronic loops by calculating the leading chiral
two-pion cuts instead of the leading chiral imaginary parts
in general. Even though two-pion-cut contributions in the
Vi only occur at O(p8) and therefore at higher chiral order
than the three-pion-cut terms, larger phase space and less
strongly suppressed threshold behavior will actually make
these contributions numerically much more significant. In
addition, for the muon channel these represent the first
cuts in the vector structure functions at all.4

At O(p8), the one-loop diagram in Fig. 5 with two
anomalous vertices contributes to the imaginary parts of
the Vi. The diagram is readily evaluated with the result

Im{Vi}= Ci
s

1536π5F 6

(
1−
4M2π
s

)3/2
, (32)

4 In [18], only the first cuts at O(p6) were considered, which
is why the two-pion cut in the vector structure functions is not
shown in Fig. 2 of that reference.

Fig. 5. Two-pion-cut diagram contributing to Im{Vi} atO(p
8)

with the same prefactorsCi of (31). Note that, again, as the
intermediate pions cannot be in a relative s-wave the dia-
gram is suppressed by an additional factor of (1−4M2π/s)
compared to the scalar diagram. We therefore find the
same threshold behavior as for the axial vector structure
functions.
While we have evaluated the leading chiral two-pion-

cut contributions to Aµν (25), and Vµν (32), the structure
functions A2, A4, and V3 are still real at these orders. We
have checked by inserting polynomial vertices of higher
order in the diagrams of Figs. 3 and 5 that this is in general
not the case. As a complete calculation of such even-higher-
order effects is beyond the scope of this article, we only
want to ensure that asymmetries due to imaginary parts in
A2, A4, and V3 are not accidentally enhanced by kinemat-
ical prefactors in the squared matrix element. To convince
ourselves that higher-order corrections are sufficiently sup-
pressed, we will below evaluate the asymmetries with the
imaginary parts ofA1 and V4 inserted by hand intoA2, A4,
and V3:

Im{A2}=M
2
K Im{A4}=

s

384π3F 4

(
1−
4M2π
s

)3/2
,

Im{V3}=
s

1536π5F 6

(
1−
4M2π
s

)3/2
. (33)

In reality, Im{V3}, Im{A2}, Im{A4} are suppressed com-
pared to (33) by at least two orders in the chiral expansion.
The “pseudo-asymmetries” calculated from (33) are there-
fore conservative upper-limit estimates for such effects.

3.4 Numerical results

We compute the differential decay width dΓ/dξ in the rest
frame of the decaying kaon by evaluating the phase space
integral using the phase space generator RAMBO [29]. In
the electron channel we apply the “standard” cuts on the
photon energy (E∗γ > 30MeV) and on the photon positron
angle (θ∗eγ > 20

◦), whereas in the muon channel we only cut
on the photon energy.
The numerical results for the contributions to the

asymmetry Aξ from the various loop diagrams are shown
in Table 2. Note that the imaginary parts of the Ai yield
the dominant contribution. The main contribution to the
Im{Vi} is of O(p8), and the numerical suppression relative
to the O(p6) Im{Ai} terms indeed turns out to be about
one order of magnitude. The asymmetry in the muon chan-
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Table 2. Asymmetries in the electron and muon chan-
nel. Vi (Ai) labels the asymmetry we would obtain if we
set all imaginary parts except Im{Vi} (Im{Ai}) to zero

electron muon

A1 1.4×10−6 4.5×10−7

A2 0 0
A3 — −0.04×10−7

A4 0 0

V1 −1.2×10−7 −3.1×10−8

2-π-cut V2 −0.9×10−7 −4.2×10−8

V3 — 0
V4 −2.2×10−7 −0.2×10−8

V1 −0.8×10−14 —
3-π-cut V2 −3.0×10−14 —

V3 — —
V4 −6.6×10−14 —

total 0.9×10−6 3.7×10−7

Table 3.Asymmetries due to non-vanishing
imaginary parts in V3, A2, A4; see (33)

electron muon

V3 – 1.4×10−8

A2 −0.8×10−6 −4.5×10−7

A4 0.5×10−6 0.5×10−7

nel is slightly smaller due to relatively smaller phase space
available for imaginary parts from the two-pion cut. We
point out once more that due to the necessary ππ→ πγ
rescattering, all these two-pion cut contributions can be
traced back to the axial anomaly. The relative size of the
two-loop contributions agrees roughly with our estimate
in the previous section, i.e. they are suppressed by seven
orders of magnitude and are totally negligible.

Fig. 6. T -even and T -odd contributions to dΓ/dξ in the elec-
tron channel. 106N−1odd =N

−1
even = Γ (Ke3γ)

Fig. 7. T -even and T -odd contributions to dΓ/dξ in the muon
channel. 106N−1odd =N

−1
even = Γ (Kµ3γ)

Finally, we quote the pseudo-asymmetries estimated
from the choice of imaginary parts given in (33) in Table 3.
We find all of them to be at most of the same order as the
non-vanishing contributions in the other structure func-
tions, hence there is no unnatural kinematical enhance-
ment of Im{V3}, Im{A2}, and Im{A4}, such that an esti-
mate of typical chiral SU(3) higher-order corrections of the
order of 20–30% remains valid.
In Figs. 6 and 7 we also plot the T -even and T -odd con-

tributions to the differential width dΓ/dξ, both for the
electron and the muon channel. As ξ2 can be expressed in
terms of the standard five invariant kinematical variables,
the distribution dΓ/dξ contains no fundamentally new in-
formation beyond differential widths with respect to those
other variables plus the integral asymmetry Aξ.

4 Comparison to other T -odd contributions

4.1 T -odd correlations and photon loops

In the previous section, we evaluated the correlators Vµν
and Aµν in ChPT and showed that the structure functions
Vi, Ai become complex at higher orders in the chiral ex-
pansion, which leads to a non-vanishing value of the asym-
metry Aξ. However, the matrix element (18) we use is only
of lowest order in α. In [16], higher-order electromagnetic
corrections to this matrix element were included. These
consist of loop diagrams with intermediate photons as the
one in Fig. 8, that develops an imaginary part. Squar-
ing the amplitude (which, in addition to (18), contains
next-to-leading-order electromagnetic corrections denoted
Tone loop in (10) in [16]) one sees that these imaginary parts
lead to a non-zero Aξ. The following asymmetries in the
electron and in the muon channel were obtained [16]:

Aξ
(
K+→ π0e+νeγ

)
= −0.59×10−4 ,

Aξ
(
K+→ π0µ+νµγ

)
= 1.14×10−4 , (34)
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Fig. 8. Example of a photon loop diagram. For a complete list-
ing of all Feynman diagrams that contribute to the imaginary
parts via electromagnetic final-state interactions, see Fig. 5
in [16]

which have to be compared to the values we get from
hadronic loops (Table 2)5. We find that the effects of strong
interaction phases are suppressed compared to the electro-
magnetic final-state interaction by roughly two orders of
magnitude.
Naively one might have expected that both are of com-

parable size because, although the electromagnetic asym-
metry is suppressed by α ∼ 1/137, hadronic loops only
occur in the SD part of the matrix element, which is sup-
pressed by a factor of ∼ 1/100. However, the following two
additional effects discussed in the previous section reduce
the impact of the imaginary parts from pion loops even fur-
ther compared to the photon loop contributions.

1. While the imaginary parts of photon loop diagrams
are non-vanishing in the complete physical phase space,
those from pion loops only contribute to the asymme-
try Aξ above the two-pion threshold, s > 4M

2
π. This

reduced part of phase space accounts for a suppression
of roughly one order of magnitude.

2. In addition, the slow rise of the imaginary part above
threshold due to its p-wave characteristic reduces its ef-
fect even further.

Altogether this explains the relative smallness of the
hadronic asymmetries. The standard model contributions
to the T -odd correlations inK�3γ are therefore indeed dom-
inated by electromagnetic final-state interactions, and the
estimate given in [16] remains valid. Hadronic loops are
suppressed even to the extent that the main uncertainty
are effects of chiral order O(e2p4) that have not yet been
considered.

4.2 T -odd correlations beyond the standard model

So far, we only considered contributions to the asymme-
try Aξ from pion and photon loop effects. We now turn
to T -odd correlations due to generalized weak current–
current interactions, which can arise in certain extensions
of the standard model. In [15, 30] the following model-
independent effective Lagrangian for s→ u transitions is

5 As noted in [16], the photon loop asymmetry is larger (and
opposite in sign) in the muon channel due to numerically sig-
nificant structures scaling with the lepton mass.

given:

L=
GF√
2
V ∗us

[
sγµ ((1+ gV )− (1− gA)γ5) uν(1+γ5)γµ�

+ s (gS+ gPγ5)uν(1+γ5)�+ gTsσ
µνuν(1+γ5)σµν�

]

+(h.c.) , (35)

with σµν =
i
2 [γµ, γν ]. In contrast to the standard model,

which only contains weak V –A transitions, there are also
terms that allow for transitions via purely vector, axial
vector, scalar, pseudoscalar, and tensor currents. For a dis-
cussion of models generating such effective couplings and
possible constraints on their size from K�3γ , see [15] and
references therein.
From the Lagrangian (35) one can immediately obtain

a generalized matrix element for theK+�3γ decay:

T =
GF√
2
V ∗useε

µ(q)∗

×

[
((1+ gV )Vµν − (1− gA)Aµν) ν(1+γ5)γ

ν�

+(1+ gV )
Fν

2p�q
ν(1+γ5)γ

ν(m�−p�/ − q/ )γµ�

+
(
gSF

S
µ + gPF

P
µ

)
ν(1+γ5)�

+ gS
f

2p�q
ν(1+γ5)(m�−p�/ − q/ )γµ�

+ gT T̂µν�ν(1+γ5)σ
ν��

+gT
FTν�

2p�q
ν(1+γ5)σ

ν�(m�−p�/ − q/ )γµ�

]
, (36)

where the hadronic correlators are defined by6

Vµν = i

∫
D4x〈π0(p′)|T

{
V emµ (x)(sγνu)(0)

}
|K+(p)〉 ,

Aµν = i

∫
D4x〈π0(p′)|T

{
V emµ (x)(sγνγ5u)(0)

}
|K+(p)〉 ,

Fν = 〈π
0(p′)|(sγνu)(0)|K

+(p)〉 ,

FSµ = i

∫
D4x〈π0(p′)|T

{
V emµ (x)(su)(0)

}
|K+(p)〉 ,

FPµ = i

∫
D4x〈π0(p′)|T

{
V emµ (x)(sγ5u)(0)

}
|K+(p)〉 ,

f = 〈π0(p′)|(su)(0)|K+(p)〉 ,

T̂µν� = i

∫
D4x〈π0(p′)|T

{
V emµ (x)(sσν�u)(0)

}
|K+(p)〉 ,

FTν� = 〈π
0(p′)|(sσν�u)(0)|K

+(p)〉 , (37)

6 Note that the scalar, pseudoscalar, and tensor correlators
are not renormalization-group invariant and have to be taken
at a specific scale. If one calculates the coupling constants gS ,
gP , gT in a certain model, they have to be chosen accordingly.
As a consequence of this, we have to specify quark mass values
for an evaluation of the scalar and pseudoscalar correlators, see
Appendix B.1, which are scale dependent.
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with ∫
D4x≡

∫
d4xeiqx . (38)

Squaring the matrix element (36) one finds that the T -odd
part is proportional to the imaginary parts of the cou-
plings gi

N−1
∑
spins

|T |2 = |T |2even+ ξ (Im{gV }CV +Im{gA}CA

+Im{gS}CS+Im{gP}CP +Im{gT}CT ) ,
(39)

where the Ci are functions depending on the K�3 form fac-
tors and the vector and axial structure functions. One can
compute the differential width dΓ/dξ by integrating over

phase space and extract the various parts A
(i)
ξ of the asym-

metry Aξ that we decompose according to

Aξ =
∑

i=V,A,S,P,T

Im{gi}A
(i)
ξ . (40)

The numerical results for the A
(i)
ξ are shown in Table 4.

They are a measure for the sensitivity of an asymmetry
determination to the imaginary parts of the different cou-
plings gi. We note that the numbers for scalar and pseu-
doscalar asymmetries disagree somewhat with the precise
results quoted in [15].
We want to shed some additional light on the struc-

ture of the terms Ci and the numerical size of the A
(i)
ξ

as displayed in Table 4. As the infrared divergences for
small photonmomenta inK�3γ are intimately linked to vir-
tual photon corrections in the non-radiative process K�3,
it is obvious that the T -odd numerator in the asymme-
try (23) cannot be infrared divergent, while the denomi-
nator is. In this sense, we would expect the asymmetries
A
(i)
ξ to be roughly of the order of the relative size SD/IB,
that is on the percent level. This proves to be a realis-
tic estimate, see Table 4. Indeed, some of the asymmetries
are proportional to structure dependent terms (A

(V/A)
ξ ,

see below, and A
(P )
ξ ), while for those in which interfer-

ence terms between different bremsstrahlung contributions

occur (A
(S)
ξ , A

(T )
ξ ), the kinematic prefactors cancel out the

appropriate power of photon momenta.
The structures CS , CP , and CT are multiplied by a fac-

tor of m� (see (B.1), (B.3), and (B.8)), which is why these
asymmetries are suppressed in the electron channel com-
pared to the ones proportional to Im{gV }/ Im{gA}.

Table 4. Asymmetries A
(i)
ξ for extensions of the stan-

dard model, where i is listed in the first column

electron muon

vector/axial vector −2.5×10−3 −7.8×10−3

scalar −3.6×10−5 −1.3×10−2

pseudoscalar −1.4×10−5 −4.8×10−3

tensor 1.7×10−5 6.0×10−3

It is argued in [15] that CA = CV , as an overall phase
compared to the standard model V –A coupling would not
lead to any asymmetry. As gA can obviously not contribute
to the squared matrix element if Aµν vanishes, we con-
clude that CA = CV has to be proportional to the axial
vector structure functions Ai. Indeed we find the follow-
ing decomposition of the asymmetries A

(V/A)
ξ (for approxi-

mately constant structure functions)

A
(V/A)
ξ

(
K+→ π0e+νeγ

)

= [1.8〈A1〉−1.5〈A2〉+0.5〈A4〉] ·10
−3 ,

A
(V/A)
ξ

(
K+→ π0µ+νµγ

)

= [5.1〈A1〉−5.3〈A2〉+0.2〈A3〉+0.8〈A4〉] ·10
−3 .

(41)

The total values in Table 4 are obtained with the values for
the 〈Ai〉 given in Table 1. It is obvious that chiral higher-
order corrections modifying the 〈Ai〉 will affect the asym-
metries A

(V/A)
ξ accordingly. (This explains a slight devia-

tion from the results for the vector/axial vector asymme-
tries in [15], as our 〈Ai〉 in Table 1 are smaller by a factor of
FK/Fπ ≈ 1.2.) We emphasize that only the presence of the
axial structure functions due to the Wess–Zumino–Witten
anomaly allows for a T -odd asymmetry that scales with
Im{gV } / Im{gA}. Furthermore, it follows that, as a mat-
ter of principle, Im{gV }/ Im{gA} can only be extracted
from experiment with the same accuracy with which the
axial structure functions are known.
We also split the form factors and structure functions

for scalar and tensor interactions in (37) into an inner
bremsstrahlung and a structure dependent part (see Ap-
pendix B, compare Sect. 2.1). We note again that inter-
ference terms of doubly structure dependent origin are
strongly suppressed and can be neglected in all cases.
For the part of the asymmetry proportional to Im{gS},
a decomposition analogous to (41) is of the following form:

A
(S)
ξ

(
K+→ π0e+νeγ

)

= [0.9+0.6〈S〉−0.2〈V3〉−0.2〈V4〉+3.4〈A1〉

−0.5〈A2〉+0.4〈A3〉+0.7〈A4〉] ·10
−5 ,

A
(S)
ξ

(
K+→ π0µ+νµγ

)

= [3.5+1.8〈S〉−0.6〈V3〉−0.5〈V4〉+10.7〈A1〉

−4.7〈A2〉+2.1〈A3〉+1.8〈A4〉] ·10
−3 . (42)

(For the definition of the scalar structure function S, see
Appendix B.2.) Here, interference between vector and
scalar bremsstrahlung terms occurs, so there is a term that
is not proportional to any of the structure functions, but it
turns out to be small, so that in particular the contribution
∝ 〈A1〉 yields the largest part of this asymmetry. So also
the asymmetry A

(S)
ξ is largely due to the existence of the

anomaly term.
The pseudoscalar form factorFPµ is itself a purely struc-

ture dependent term [15], see Appendix B.1, that can be
calculated at leading order from the Wess–Zumino–Witten
anomaly.
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Only for the tensor asymmetryA
(T )
ξ , interference terms

of purely bremsstrahlung type are dominant and by them-
selves lead to the numbers quoted in Table 4 at a few
percent accuracy. Here, the vector and axial vector struc-
ture functions play no important role. (We have disre-
garded structure dependent tensor contributions, about
which nothing is known; see Appendix B.2.)

4.3 Cut dependence

In this section, we want to briefly investigate how the vari-
ous contributions to the asymmetries scale with the cuts on
E∗γ and (in the electron channel) θ

∗
eγ .

In Figs. 9 and 10, we show the Ecutγ dependence of
the T -odd asymmetries due to pion loops, photon loops,
as well as the A

(i)
ξ , i = V/A, S, P, T . Because of the in-

frared singularity in the T -even decay width, the asym-
metries display a weak singular behavior ∝ (logEcutγ )

−1

at very small energies; Figs. 9 and 10 show that this sin-
gularity is largely irrelevant for cuts larger than 5MeV.
The pion loop contributions display the strongest rise
with Ecutγ as the phase space regions with small E∗γ are
those where the imaginary parts of the hadronic struc-
ture functions vanish anyway. Otherwise, there are no
dramatic changes in the relative importance of the differ-
ent contributions in either channel, such that the avail-
able statistics should determine the preferred experimental
cuts.
Figure 11 shows the θcuteγ dependence of the various con-

tributions to the asymmetry for the electron channel. Here
the variation of the hadronic loop contributions is partic-
ularly small. A significant reduction of the asymmetries
due to the near-singular behavior of the denominator for
collinear photon–electron momenta is only visible for cuts
well below 10◦. Otherwise the conclusion is similar to the
one for the photon energy cut dependence: the relative im-
portance of the various contributions hardly varies.

Fig. 9. Dependence of the various contributions to the T -odd
asymmetry on Ecutγ , for the electron channel, at fixed θ

cut
eγ =

20◦

Fig. 10. Dependence of the various contributions to the T -odd
asymmetry on Ecutγ , for the muon channel

Fig. 11. Dependence of the various contributions to the T -odd
asymmetry on θcuteγ , for the electron channel, at fixed E

cut
γ =

30MeV

5 Summary and conclusions

In this article, we have completed and deepened previous
investigations of T -odd correlations in radiative K�3 de-
cays. We can summarize our findings as follows.

1. Although the vector and axial vector structure func-
tions Vi,Ai are real at chiralO(p4), they develop imagi-
nary parts stemming from intermediate two- and three-
pion states at higher orders. Starting atO(p6), we have
calculated the asymmetry due to two-pion cuts in the
Ai and three-pion cuts in the Vi, where the latter were
found to be totally negligible due to phase space and
threshold behavior suppression.

2. We have supplemented the leading imaginary parts in
chiral power counting by the leading chiral two-pion
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cuts, which only appear at O(p8) in the case of the
Vi. Altogether, this provides a reliable estimate of the
asymmetries due to strong interaction phases, which we
find to be Aξ = 0.9×10−6 for the electron channel and
Aξ = 3.7×10−7 for the muon channel. Even-higher-
order corrections to these numbers are not expected to
exceed 20–30%.

3. These asymmetries turn out to be smaller by about two
orders of magnitude than those calculated from electro-
magnetic final-state interactions [16]. This suppression
can be understood by the smallness of structure depen-
dent contributions in this decay channel, higher thresh-
olds of the hadronic intermediate states, and p-wave
threshold behavior. Altogether, these effects overcom-
pensate for the suppression of photon loops by the fine-
structure constant α. We conclude that the estimate of
the standardmodel contribution to the T -odd asymme-
try based solely on photon loops remains valid.

4. We have re-analyzed the structure of the asymme-
tries that emerge due to non-standard current–current
interactions with complex coupling constants. The
generic size of such asymmetries at or below the per-
cent level can be understood in terms of the relative
size of structure dependent terms relative to the T -even
bremsstrahlung amplitude. We emphasize that the ap-
pearance of asymmetries proportional to imaginary
parts in vector, axial vector, scalar, and pseudoscalar
coupling constants are due to the presence of the Wess–
Zumino–Witten anomaly.

5. We have, finally, shown that the relative importance of
various contributions to T -odd asymmetries show no
strong dependence on the experimental cuts Ecutγ , θ

cut
eγ .

We conclude that the theoretical framework for an inter-
pretation of T -odd asymmetries in K+�3γ decays is firmly
set, and it remains a formidable, but potentially rewarding
challenge to existing and future experiments [13, 14, 31, 32]
to measure such asymmetries at the required accuracy.
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Appendix A: Numerical parameters

A.1 Masses and decay constants

In this article, we use the particle masses MK =MK+ =
493.68MeV, Mπ =Mπ0 = 134.98MeV, me = 0.511MeV,
mµ = 105.658MeV. In general, we work in the isospin limit.
We only adjust the thresholds in the loop functions such
that the cuts in s start in the appropriate place, i.e. in (25),

(30), and (32) we replace

(
1−
(2Mπ)

2

s

)3/2
−→

(
1−
(2Mπ±)

2

s

)3/2
(A.1)

for the two-pion cuts, and

(
1−
(3Mπ)

2

s

)4
−→

(
1−
(2Mπ±+Mπ0)

2

s

)4
(A.2)

for the three-pion-cut contributions, where we useMπ± =
139.57MeV.
To be consistent with [18] where the meson decay con-

stants were used according to F 2→ FπFK , we also employ
F 4→ FKF 3π and F

6→ FKF 5π in the loop contributions,
with Fπ = 92.4MeV and FK = 1.22Fπ.

A.2 K�3 form factors

TheKe3 form factor can be parameterized by

f+(t) = f+(0)

(
1+λ+

t

M2π
+λ′′+

t2

M4π

)
. (A.3)

For f+(0) we use the parameter-free one-loop result given
in [33]

fK
+π0

+ (0) = 1.022fK
0π−

+ (0) = 0.998 , (A.4)

and use the one-loop value for λ+,

λ+ = 0.0275 . (A.5)

We neglect the curvature term ∝ λ′′+, a final experimen-
tal conclusion on this term seems not to have been reached
so far; compare [34, 35]. A similar parameterization can be
used for the scalar form factor,

f0(t) = f0(0)

(
1+λ0

t

M2π

)
, (A.6)

which is related to f1 and f+ by

f0(t) = f+(t)+
t

M2K−M
2
π

[f1(t)−f+(t)] . (A.7)

We use

λ0 = 0.016 (A.8)

given by one-loop ChPT [33], which is in fair agreement
with the latest experimental findings [34].

Appendix B: Form factors and structure
functions beyond the standard
model

In this section we give expressions for the correlators of
non-standard currents defined in (37) in terms of form fac-
tors and structure functions.
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B.1 Derivation of FSµ , f , and F
P
µ

Using chiralWard identities [17], one can express the scalar
correlator FSµ and the form factor f in terms of Vµν and
Fν . This has been done in [15], so here we merely quote the
results,

VµνW
ν +Fµ = (mu−ms)F

S
µ ,

Fν(p−p
′)ν = (mu−ms)f . (B.1)

Note that because of the axial anomaly, there is no cor-
responding relation for FPµ . This pseudoscalar term can be
evaluated in ChPT and contains no inner bremsstrahlung
contribution. At leading order one obtains [15, 30]

FPµ =
iP

√
2(mu+ms)

εµλ�σp
′λq�Wσ , (B.2)

with

P =
1

2π2F 2
M2K

M2K−W
2
. (B.3)

As pointed out in footnote 6, the scalar and pseudoscalar
correlators are renormalization scale dependent, and we
have to specify (scale-dependent) quark masses. For our
numerical evaluations, we use mu = 4MeV and ms =
115MeV, which are thought to be typical values at a scale
of about 2 GeV.

B.2 Decomposition of scalar and tensor correlators

The correlators FSµ and T̂µν� can be split into an inner
bremsstrahlung and a structure dependent part in a simi-
lar manner as done for Vµν , along the lines of Appendix E
in [18]. For the scalar correlator we require

qµFS,IBµ = f(t) , qµFS,SDµ = 0 , (B.4)

and find

FS,IBµ =
pµ

pq
f(W 2)+

Wµ

qW
∆f ,

FS,SDµ =
S

√
2(mu−ms)

(qWpµ−pqWµ) , (B.5)

with ∆f = f(t)−f(W 2). Using (B.1) we see that S is given
by the form factor f+ and the Vi as follows:

S = 2
∆f+
qW

+V1+W
2V3+p

′WV4 . (B.6)

FTν� can be parameterized as

FTν� =
iBT (t)√
2MK

(pνp
′
�−p

′
νp�) . (B.7)

Again, we can split T̂µν� into an inner bremsstrahlung part
that diverges for low photon momenta and a structure de-
pendent part. We find

T̂ IBµν� =
i

√
2MK

[
BT (t)

(
gµνp

′
�− gµ�p

′
ν

)

+

(
pµ

pq
BT (W

2)+
Wµ

qW
∆BT

)(
Wνp

′
�−p

′
νW�
)]
,

(B.8)

with ∆BT =BT (t)−BT (W 2), and (see also [30])

−iT̂ SDµν� =B1
[
p′µ(qνW�−Wνq�)−p

′q(gµνW�− gµ�Wν)
]

+B2
[
p′µ
(
qνp

′
�−p

′
νq�
)
−p′q

(
gµνp

′
�− gµ�p

′
ν

)]

+B3
(
qWp′µ−p

′qWµ
) (
p′νW�−Wνp

′
�

)

+B4 [Wµ(qνW�−Wνq�)− qW (gµνW�− gµ�Wν)]

+B5
[
Wµ
(
qνp

′
�−p

′
νq�
)
− qW

(
gµνp

′
�− gµ�p

′
ν

)]

+B6 [gµνq�− gµ�qν ] . (B.9)

Little is known about the form factor BT and the struc-
ture functions Bi. In [36] BT is estimated to be constant
and of the order of one; this estimate was roughly con-
firmed in a lattice calculation [37]. In our analysis we will
useBT (t) = 1. As we know nothing about theBi we will set
them to zero.

Appendix C: Kinematical factors in squared
matrix elements

In this section we quote explicit expressions for the kine-
matical factors that appear in the T -odd parts of the
squared matrix elements (18) and (39), which were ob-
tained using FORM [38]. These depend on scalar products
of the external momenta that we abbreviate as follows:

pp′ = a , pq = b , pp� = c , ppν = d ,

p′q = e , p′p� = f , p′pν = g , p�q = h ,

pνq = j , p�pν = k , pW = l , p′W =m,

qW = n , M2π = rπ , m2� = r� . (C.1)

In this appendix, all quantities are for simplicity given in
units of MK , i.e. we set MK = 1. In addition, we will use
ω =M2K−W

2 = 1−2k− r� for the inverse kaon propaga-
tor. We split the normalized squared matrix elements into
a T -even and a T -odd part,

N−1
∑
spins

|T |2 = |T |2even+ ξ|T |
2
odd . (C.2)

C.1 Hadronic loops

The T -odd part of (C.2) (see also (18)) can be written as

|T |2odd =
4∑
i=1

[ (
dif+(t)+ eiδf++d

II
i f1(t)+ e

II
i δf1

)
Im{Vi}

+
(
d5i f+(t)+ e

5
i δf++d

II5
i f1(t)+ e

II5
i δf1

)
Im{Ai}

]

+O
(
V 2i , A

2
i , ViAi

)
. (C.3)
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Table 5. Prefactors that multiply d̄i, ēi etc.

d̂1 4/(bh) d̂51 4/(bh) d̂II51 2r�/(bh)

d̂2 4/(bh) d̂52 4/(bh) d̂II52 2r�/b

d̂3 2r�/h d̂53 2r�/(ωh) d̂II3 r�/h d̂II53 r�/(ωh)

d̂4 2/h d̂54 2/h d̂II4 r�/h d̂II54 r�/h

ê1 4/b ê51 4/b êII51 2r�/b

ê2 4/b ê52 4/b êII52 2r�/b

We write di = d̂id̄i etc. with the prefactors d̂i, êi, ... given
in Table 5. Note that those multiplying f0(t), δf0 and
Im{V3}, Im{A3} are proportional to r� and can be neg-
lected in the electron channel.
The non-vanishing coefficients turn out to be

d̄1 = b(f +2h)+h(l−n−1) ,

d̄2 = h(n− l− b)+ b(k+ r�) , d̄3 = e ,

d̄4 = 2g(n− b)+nrπ ,

d̄51 = (f − g)h− bf ,

d̄52 = (f − g)h+ b(h+k) , d̄
5
3 = e−2g ,

d̄54 =−4k
2−2kr�−4gk−2nk+2k−nr�+n

−2(b+f)(g+n+2k)−2fg ,

d̄ II3 = n , d̄
II5
1 = h− b , d̄

II5
3 =−(n+2k) ,

d̄ II4 = e , d̄
II5
2 = 1 , d̄

II5
4 =−(e+2g) ,

ē1 =−b(f+ g+2n)−n(l−n−1) ,

ē2 = n(l−n)− b(2k+ r�) ,

ē51 = e(f − g) , ē
II5
1 = e ,

ē52 = n(g−f) , ē
II5
2 =−n . (C.4)

C.2 Beyond the standard model

Here we show the explicit expressions for the factors CV ,
CA, CS , CP , and CT that appear in the squared matrix
element (39). We do not consider the parts of Ci that are
quadratic in structure dependent terms. We have checked
numerically that neglecting these terms does not change
the final results by more than a couple of percent at most.

Vector and axial vector interaction. CV = CA is decom-
posed according to

CV = CA =
1

bh

4∑
i=1

[
α
(i)
+ f+(t)+ α̃

(i)
+ δf+

+r�
(
α
(i)
1 f1(t)+ α̃

(i)
1 δf1

)]
Re{Ai} ,

(C.5)

with

α
(1)
+ = 4 [bf +(g−f)h] ,

α
(2)
+ =−4 [(f − g)h+ b(h+k)] ,

α
(3)
+ = 2b(2g− e)r�/ω ,

α
(4)
+ = 2b

[
−n−2k+4gk+2nk+4k2

+2b(g+2k+n)+2f(2g+2k+n)+ (2k+n)r�
]
,

α
(1)
1 = 2(b−h) , α

(2)
1 =−2h ,

α
(3)
1 = b(2k+n)/ω , α

(4)
1 = b(e+2g) ,

α̃
(1)
+ =−4eh(f− g) , α̃

(2)
+ = 4hn(f− g) ,

α̃
(1)
1 =−2eh , α̃

(2)
1 = 2hn . (C.6)

In terms of powers of photon momenta q, CV = CA has to
be of O(q−1), as it indeed proves to be according to (C.5)
and (C.6): it arises as an IB–SD interference contribution
to ξ|T |2odd, where ξ itself is of O(q).

Scalar interaction.We write CS in the form

CS =
m�

mu−ms

1

bh

{[
σ+ (f+(t)δf0−f0(t)δf+)

+σ1 (f1(t)δf0−f0(t)δf1)

+
4∑
i=1

(
f0(t)

(
σ
(i)
V Re{Vi}+σ

(i)
A Re{Ai}

)

+δf0σ̃
(i)
A Re{Ai}

)]
(1− rπ)

+
[
σ
(+)
S f+(t)+σ

(1)
S f1(t)

]
Re{S}

}
, (C.7)

where the non-vanishing coefficients are given by

σ+ = 2e , σ1 = n ,

σ
(3)
V = bn , σ

(4)
V = be ,

σ
(1)
A =−2(b−h) , σ

(2)
A = 2h ,

σ
(3)
A =−b(2k+n)/ω , σ

(4)
A =−b(e+2g) ,

σ̃
(1)
A = 2eh , σ̃

(2)
A =−2hn ,

σ
(+)
S =−2be , σ

(1)
S =−bn . (C.8)

We find from (C.7) and (C.8) that the leading contribution
to CS in the soft photon limit is again of O(q−1), although
there are IB–IB interference terms. A stronger divergence
in these is forbidden by the requirement that a ξ-odd in-
frared singularity has to be absent, therefore the purely
bremsstrahlung contributions to the asymmetries (42) are
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not bigger (or indeed numerically a bit smaller) than those
proportional to the axial structure functions. Coefficients
of Re{Vi} and Re{S} are suppressed by an additional
power of q.

Pseudoscalar interaction.We decompose CP in the form

CP =
m�

mu+ms

1

h
[π+f+(t)+π1f1(t)] Re{P} , (C.9)

where

π+ = 2(e−2g) , π1 =−(2k+n) . (C.10)

Tensor interaction. We setBT = 1 and disregard structure
dependent tensor terms. We then find

CT =
m�

bh

[
θ+f+(t)+ θ̃+δf++ θ1f1(t)+ θ̃1δf1

+
4∑
i=1

(
θ
(i)
V Re{Vi}+ θ

(i)
A Re{Ai}

)]
, (C.11)

with

θ+ = 4e , θ̃+ = 4 [b(b+m)−n(1− l)] ,

θ1 = 2n , θ̃1 = 2 [n(e+f− g)+ (n− b)r�] ,

θ
(1)
V = 4 [bf +h(2b+ l−n−1)] ,

θ
(2)
V = 4 [b(k+ r�)−h(b+ l−n)] ,

θ
(3)
V = 2b [n(g+n−f− b)+ (b−n)r�] ,

θ
(4)
V = 2b [n(1− l)− b(b+m)] ,

θ
(1)
A = 4b(b− g−n) , θ

(2)
A = 4bk ,

θ
(3)
A = 2b [(n+2k)(e+f− g)+ (b−n−2g)r�] /ω ,

θ
(4)
A = 2b[b(b+f− g−4(n+k))+n(1−3f− g+n)

−2mg+2k(1−2m−n−2k)− (n+2k)r�] .
(C.12)

As for the scalar interaction, both IB–IB and IB–SD in-
terference terms show a leading behavior ∝ 1/q in the soft
photon limit; here, however, the IB–IB terms turn out to be
numerically dominant.
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